Lassen is nog steeds de belangrijkste verbindingstechniek en moet beschouwd worden als de voornaamste technologie in de productie van permanente verbindingen in metalen en kunststoffen, en dit in alle takken van de productie. Lastechnologie is onmisbaar in de economie van elk geïndustrialiseerd land. Gelaste producten en constructies leveren een belangrijke bijdrage tot het BNP. De industrie die gebruik maakt van lassen en aanverwante technieken stelt wereldwijd miljoenen mensen tewerk. De creatie van nieuwe technologieën en hun implementatie in moderne productiemethodes heeft een belangrijke invloed op de industriële ontwikkeling. Wat brengt de toekomst?
In het eerste deel rond vervorming hebben we het over vervorming veroorzaakt door het lassen van een plaat in het midden van een dunne plaat voor het lassen in een dwarsverbinding van een brugsectie. We bespreken de verschillende assemblagetechnieken, de lasprocedure en geven enkele praktische tips mee.
Schade-analyse omvat een brede waaier van onderzoek, waarbij een positieve interactie tussen de klant en de onderzoeksingenieurs noodzakelijk is. Veelal weet de klant niet wat er bij schade kan onderzocht worden, en hoe men komt tot een getrouw beeld van de schade. We geven een overzicht van de door het BIL meest gebruikte onderzoeksmethoden op het vlak van schadeonderzoek door middel van metallografie en fractografie.
Deze bijdrage gaat in detail in op het weerstandlassen van aluminium en wel specifiek gericht op het punt- en rolnaadlassen. Puntlassen is daarvan de meest toegepaste techniek van het weerstandlassen. Dit procédé zal dan ook hoofdzakelijk worden behandeld. Projectielassen is niet zo aangewezen als lastechniek voor het verbinden van aluminiumlegeringen omwille van de meestal (te) goede vervormbaarheid van de te lassen materialen.
Deze publicatie gaat in detail in op het weerstandlassen van aluminium en wel specifiek gericht op het punt- en rolnaadlassen. Puntlassen is daarvan de meest toegepaste techniek van het weerstandlassen. Dit procédé zal dan ook hoofdzakelijk worden behandeld. Projectielassen is niet zo aangewezen als lastechniek voor het verbinden van aluminiumlegeringen omwille van de meestal (te) goede vervormbaarheid van de te lassen materialen.
In deze vierde voorlichtingsfiche rond aluminium vindt u het vervolg op TIG-lassen (lasuitvoering, lasfouten, insluitsels en andere lasfouten) en het eerste deel over MIG/MAG-lassen (met o.a. historiek, principe, boogtypes en Puls-MIG-apparatuur en beschermgassen).
Al vele jaren heeft het MIG/MAG-lassen het grootste aandeel in de smeltlasprocessen. Zijn universele inzetbaarheid wat betreft dikte, materiaalsoorten, naadvormen en lasposities, verklaart zijn succes in zowat alle domeinen van de metaalverwerking. Recente ontwikkelingen in het MIG/MAG-lassen zijn o.m. het lassen met vlakke draad, stroombrontechnologie, het gepulseerd lassen en het lassen met wisselstroom.
Deze publicatie geeft een overzicht van de verschillende soorten aluminium en dit volgens de Amerikaanse en Europese classificaties. Momenteel bestaan er meer dan 400 aluminiumlegeringen (kneedlegeringen) en nog eens meer dan 200 gietlegeringen. Een goede start om deze de te leren kennen, bestaat erin vertrouwd te raken met de verschillende systemen die gebruikt worden om de materialen in te delen.
Doel van het normproject is data genereren voor de nieuwe Europese normen voor hoogtemperatuurmaterialen en -toepassingen. Meer specifiek wordt onderzocht of bij het lassen van de nieuwe generatie 2 1/4Cr stalen voorverwarmen en/of een warmtebehandeling na het lassen (PWHT) noodzakelijk is. Ook worden alle materialen onderzocht op reheat cracking gevoeligheid en het kruipgedrag van de gelaste pijpen. Op basis van de resultaten worden praktijkgerichte aanbevelingen opgesteld.