Research projects

  • ACODEPT: Advanced Coil Design for Electromagnetic Pulse Technology

    The overall aim of the ACODEPT project is enabling companies to produce faster and more efficiently by implementing electromagnetic forming, welding, and cutting processes. As a prerequisite for this, the companies shall be provided with design strategies for durable, robust and flexible tool coils for specific applications.

    Start: 01-01-2012
    End: 31-12-2013
  • Start: 01-09-2020
    End: 01-09-2020
  • Electromagnetic pulse welding of similar and dissimilar materials - Weldability and mechanical properties

    The aim of the project is to generate all the necessary knowledge to develop a standard for this welding process, such as information on weldable materials, material combinations and dimensions, design of welded joints, recommendations regarding the minimum tests to be carried out, suitable welding parameters and welding windows, quality requirements and acceptance criteria, and this for a wide range of materials.

    Start: 01-12-2019
    End: 01-12-2021
  • INNOJOIN: Development and evaluation of advanced welding technologies for multi-material design with dissimilar sheet metals

    The INNOJOIN project provides insight in new modern welding technologies for welding of dissimilar sheet metals and helps companies to identify the most suitable welding technology for their products. During the project, a few representative cases were developed, based on the input of the participating companies.

    Start: 01-03-2014
    End: 30-06-2016
  • Join'EM: Joining of copper to aluminium by electromagnetic fields

    JOIN’EM project addresses the increasing requirements of industrial enterprises to weld dissimilar materials. By allowing joining of copper to aluminium by electromagnetic fields, the project will provide increased performance, efficiency as well environmental benefits to Europe’s industry.

    Start: 01-09-2015
    End: 31-08-2018
  • LightBEE : Development of Lightweight Battery Carriers for EV Energy Units

    The overall aim of the research project “LightBEE” is to develop a range of new high added-value battery components for the transport industry, using innovative joining technologies. Therefore, systematic and reliable knowledge and data will be generated about the applicability of promising joining processes for manufacturing of battery modules, carriers and sub-components. The optimised battery components should be lighter, having better safety properties, and produced more cost-effectively and more environmentally-friendly.

    Start: 01-05-2020
    End: 30-11-2022
  • MAGPULS : Electromagnetic pulse forming

    Magnetic pulse forming is a new, very innovative but nearly unknown production process. The Research Centre of the Belgian Welding Institute has started up a research project in 2008 to demonstrate the industrial advantages of this technique.

    Start: 01-01-2008
    End: 31-12-2009
  • MetalMorphosis : Electromagnetic pulse technology for novel hybrid metal-composite components in the automotive industry

    Global trends are forcing industry to manufacture lighter, safer, more environmentally, more performant and cheaper products. In the automotive industry, weight reduction is pursued and in this regard, lightweight materials such as composites offer the most suitable solution due to their considerably lower density. In view of this, multi-material designs exploit the material with desired properties for each part of the automotive component. However, the need for the next generation of novel hybrid metal-composite components brings along major challenges regarding the joints between different material types. This is the driving force behind the MetalMorphosis research project, which was carried out at the Belgian Welding Institute in collaboration with 8 European research and industrial partners.

    This article first presents a short overview of the objectives targeted in the MetalMorphosis research project. Subsequently, the joining design concepts developed and research related to the hybrid metal-composite tubular and sheet joints using the electromagnetic pulse technology, will be addressed. Finally, the development of a brake pedal and a shock absorber, both consisting of metal-composite hybrid components, is highlighted. 

    Start: 01-09-2013
    End: 28-02-2016
  • SOUDIMMA : Electromagnetic pulse welding

    Magnetic pulse welding is a new, very innovative but nearly unknown production process. The working principle of the welding process is based on the use of electromagnetic forces to deform and to weld workpieces. Since this sophisticated welding process doesn't use heat to realise the weld, it offers important advantages with regard to the conventional welding techniques!

    Start: 01-07-2009
    End: 30-06-2011