Welding Terminology TIG – MIG/MAG

BIL

2022

Program

Timing	Program
13h00 - 15h00	Welding terminology TIG welding MIG-MAG welding
15h00 - 15h10	Break
15h10 - 17h00	Destructive testing

Content

1 Welding Terminology

2 TIG welding

3 MIG/MAG welding

Welding Terminology

- 1 Base material (BM)
- 2 Heat affected zone(HAZ)
- 3 Fusion line
- 4 Weld metal (WM)
- 5 Cap of the weld
- 6 Root of the weld

Welding Terminology: type of welds

FW = Fillet Weld

Triangular weld in a square preparation for making a T-joint, corner joint or lap joint

BW = Butt Weld

Weld other than a fillet weld, made in a groove or in a square preparation

Welding Terminology: type of joints

Joint: junction of workpieces or the edges of workpieces that are to be joined

Corner joint

- Parts ± perpendicular
- Weld on both plate edges
- Single sided or double sided
- With or without full penetration

Welding Terminology: type of joints

Butt joint

Plates / tubes ± in the same plane

Overlap joint

- Advantage : no preparation
- Disadvantage: additional moment in the connection

Plug welds

Welding Terminology: type of joints

T-joint

- Parts ± perpendicular in T-shape
- ▶ Without weld preparation → fillet weld
- ▶ With weld preparation → combination BW+FW

Elementary welding symbols ISO 2553

The symbol used to indicate a weld represents more or less the shape of the weld preparation.

This symbol says nothing about the welding process to be used!

No.	Designation	Illustration	Symbola		
		(dashed lines show joint preparation prior to welding)			
1	Square butt ^b	-			
2	Single-V butt ^b	\			
3	Single-V butt with broad root face ^b				
4	Single-bevel buttb				
5	Single-bevel butt with broad root face ^b				
6	Single-U butt ^b		$\overline{}$		
7	Single-J butt ^b				
8	Flare V				
10	Fillet				

Welding Terminology: basic welding symbol ISO 2553

Basic welding symbol: Used to indicate the location of a weld

1) Arrow line:

- Shall point to and shall be in contact with a solid line of the joint on the drawing
- Shall be drawn at an angle and joined to a reference line and completed with a closed filled arrowhead

2) Reference line:

- parallel to the bottom edge
- Location for elementary symbol

3) Tail:

- Optional, only if there is extra information

Welding Terminology: basic welding symbol ISO 2553

Arrow and Reference line system A:

> **Elementary symbol**:

- on continuous line= weld arrow side
- on dashed line = weld on the other side of the arrow

Welding Terminology: basic welding symbol ISO 2553

Arrow and Reference line system B:

> **Elementary symbol**:

- above reference line = weld on the other side of the arrow
- below reference line = weld arrow side

Welding Terminology: dimension of welds ISO 2553

Butt weld:

penetration depth « s »: thickness of the weld metal excluding any reinforcement

No cross-sectional dimension > full penetration!

Welding Terminology: dimension of welds ISO 2553

Fillet weld:

- <u>throat thickness « a »:</u> height of the largest isosceles triangle that can be inscribed in the section of a fillet weld
- leg length « Z »: distance of the intersection of the fusion faces and the toe of a fillet weld

Welding Terminology: dimension of welds ISO 2553

- Cross-sectional dimensions:
 - Fillet weld:

Welding Terminology: Weld preparation

- Which weld preparation to choose?
- ISO 9692-series gives recommendations:
- Part 1: Electrode, MAG, TIG, autogenous welding of steel
- Part 2: Submerged arc welding of steel
- Part 3: MIG en TIG welding of Alu
- > Part 4: Clad steels

Welding Terminology: Weld preparation

ISO 9692-3: MIG en TIG welding of Alu

Weld			Joint preparation						
Workpiece thickness t	Designation	Symbol ^b	Illustration	Cross-section	Angle α , β	Gap b	Thick- ness of root face c	Other dimensions	Recommend- ed welding process ^c
<i>t</i> ≤ 4	Square butt weld	II		<u>b</u>	_	$b \le 1$	_	_	141
2 ≤ t ≤ 4	Square butt weld with temporary (MR) or perma- nent (M) backing	 MR M				<i>b</i> ≤ 1,5	_	_	131
3 ≤ <i>t</i> ≤ 5	Single-V butt weld	\ <u></u>			60° ≤ α ≤ 90°	<i>b</i> ≤ 2	<i>c</i> ≤ 2	_	131
	Single-V butt weld with removable/ temporary (MR) or permanent (M) backing	MR M			60° ≤ α ≤ 90°	<i>b</i> ≤ 4	<i>c</i> ≤ 2	_	131

Welding Terminology: Weld preparation

Backing:

Welding Terminology: Dilution

 Dilution: used to evaluate the chemical composition of the weld metal

$$\frac{a+c}{a+b+c} \times 100\%$$

Welding Terminology: Dilution

Influancing factors: joint type, welding process, location

MIG/MAG: root 10-40%; filler 5-20%

Content

1 Welding Terminology

2 TIG welding

3 MIG/MAG welding

Arc Welding with gas

- Why do we need gas?
 - Protection of weld pool against environmental influences (shielding gas)
 - Air composition: $78\% N_2 + 21\% O_2 + 1\%$ remaining gas
 - Protection electrode (TIG)
 - Melt pool reactions (MAG)
 - Adding active components: oxidizing or reducing
 - Ionization of the arc (arc energy)
 - Welding arc = electrically conductive gas column
 - Weld seam formation
 - Influence of the surface tension
 - Influencing the weld pool shape

TIG welding

TIG welding: overview equipment

TIG welding:

- Application:
 - Welding of
 - C-steel
 - Stainless steel
 - Aluminium
 - ► Thickness 0,5mm up to 5mm
 - ► The root in higher thicknesses
- ▶ +:
 - High quality
 - Fewer welding defects
- **-**
 - Slow
 - Low deposition rate

TIG welding: The arc

TIG welding: The arc

- Ignition
 - Lift-arc, scratch arc

High frequency (Mhz) and high voltage (kV)

Requirements

- High melting temperature
- Emission of electrons should be easy
- Ignition of arc should be easy

- Tungsten: melting point: 3422 °C (3695K)
- Addition of oxides to improve electron emmission and ingnition
 - (Thorium Th) radioactive, so limited use
 - Zirconium Zr
 - Lanthanium La
 - Cerium Ce

Types

Tungsten Electrode Types

(Green)

Unalloyed, pure tungsten. Good arc stability with AC with either balanced wave or continuous high-frequency stabilization. Preferred for AC welding of aluminum and magnesium. When heated, the pure tungsten electrode forms a balled end.

EWTh-1 (Yellow), EWTh-2 (Red)

EWCe-2 (Orange)

Alloyed with about 2 percent ceria, the most abundant of the rare elements. These are all-purpose electrodes that operate with AC or DC of either polarity. Provide long life and high current-carrying capacity. Unlike thoria, ceria is not a radioactive material.

EWLa-1 (Black)

Has 1 percent lanthanum oxide, often referred to as lanthana, another of the rare-earth elements. The operating characteristics and advantages are similar to the EWCe-2 electrode.

EWZr-1 (Brown)

Designed for AC welding when the highest-quality work is necessary. Contains less than 1 percent zirconium oxide, which produces a stable arc. Current-carrying capacity equal to or greater than equal-sized thorium electrode. Not recommended for DC welding.

EWG (Gray) =

Contains unspecified additions of rare-earth oxides or combinations of oxides, which must be identified by the manufacturer. Electrode capabilities also should be identified by the manufacturer.

TIG welding: The gas

Ar or He

TIG welding: The gas

Penetration

Material: Al Mg 4,5 Mn

TIG welding: Welding alu

Problem of welding Aluminium

No or insufficient destruction of the oxide film at simultaneous melting of aluminium

Destruction of the oxide film by collision of ions

TIG welding: Welding alu

Wider bead, good penetration ideal for buildup work

Narrower bead, good penetration ideal for buildup work

Wider bead and cleaning action

Narrower bead, with no visible cleaning

TIG welding: Welding alu

Workpiece thickness mm	Shape of groove weld	Tungsten electrode diameter mm	Welding current *) A	Filler rod diameter mm	Argon consumption L/min.	Amount of Layers
1	II	1.6	50 60	2	4 5	1
2	II	2.4	60 90	2	5 6	1
3	II	2.4	90 150	3	5 6	1
4	II	3.2	150 180	3	6 8	1
6	V	3.2	180 240	4	8 10	2
8	V	4.0	200 280	4	8 10	2
10	V	4.8	260 350	5	10 12	2 3
12	V	6.4	320 400	5	12 14	3

^{*)} Values for butt welds; in the case of fillet welds these should be increased by 10 to 20%.

Tungsten inclusions

Porosity

Lack of penetration

Undercut

Cracks

Content

1 Welding Terminology

2 TIG welding

3 MIG/MAG welding

MIG – MAG welding

MIG – MAG welding: overview equipment

Joining your ruture.

MIG – MAG welding:

- Application:
 - Welding of
 - C-steel
 - Stainless steel
 - Aluminium
 - Thickness ≥1mm
- + (compared to TIG) :
 - Higher deposition rate (1 to 6 kg/h)
 - Easier to automate
- (compared to TIG):
 - Higher risk of weld defects
 - More complex equipment
 - More critical welding parameters

MIG – MAG welding

MIG – MAG welding: Arc transfer modes

MIG – MAG welding: Arc transfer mode: short circuit

MIG – MAG welding: Arc transfer mode: spray

MIG – MAG welding: Arc transfer mode:

	Advantage	Disadvantage
Short-circuit transfer	- Welding in position - HI 凶 - Thin material (root)	Limited deposition rateRough weld appearanceSpatter
Spray transfer	- High deposition rate- less spatter- Smooth weld appearance	Not in positionHard to controlNo thin plate

Pulse welding > combines advantages of spray and short-arc

MIG – MAG welding: gas

- MIG: Ar, He or mixtures
 - Ar/He 30-75%,... (Alu)
- MAG: mixtures (with an active component)
 - Ar/CO2 mixtures → eg. Ar/CO2 5-20%,... (carbon steel)
 - ► Ar/O2 mixtures \rightarrow eg. Ar/O2 1-5%,...
 - Ar/ 2-3%CO2/1%H2 (stainless steel)

MIG – MAG welding: wire

- Solid wire:
 - Diameter 0,8 to 2,4 mm
 - Composition depends of the material to be welded
 - unalloyed steel: addition of Mn and Si
 - Thin copper layer on outside of the wire
 - in metal or plastic coils (about 15 kg)
 - in barrels of 250-1000kg
 - Classification according to standards

- Diameter 1 to 2,4 mm
- Metal cored > no slag is formed
- Flux cored > slag is formed on the weld
 - Alloy elements and arc stabilizers

MIG – welding: welding Alu

MIG welding:

- Ar/He mixture (no CO2)
- He increase penetration and/or welding speed
- Pure gas with low H
- High Q wire with low H in oxide layer
- Pulsed welding (No short-circuit transfer)
- DC + (good cleaning)

Cracks

Crater crack

Surface porosity

Porosity internal

Uniformly distributed

End crater pipe

Lack of fusion

Lack of penetration

undercut

Excess weld metal

Excessive penetration

Sagging / incompletely filled groove

Burn through

Excessive asymmetry of fillet weld

Bad restart

Insufficient throat thickness

- 1 design throat thickness gorge théorique Sollnahtdicke
- 2 actual throat thickness gorge réelle tatsächliche Nahtdicke

Spatter / (wire)

CONTACT

Ing. Benny Droesbeke, IWE

Project Engineer | Welding Standards

T+32 (0)9 292 14 17 F+32 (0)9 292 14 01 benny.droesbeke@bil-ibs.be

Belgisch Instituut voor Lastechniek vzw
Technologiepark 48 B-9052 Zwijnaarde
info@bil-ibs.be | www.bil-ibs.be | www.nal-ans.be

